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ABSTRACT OF THESIS 
 
 
 
 
DEVELOPMENT OF PROTEIN-IMPRINTED POLYSILOXANE BIOMATERIALS: 

PROTEIN SELECTIVITY AND CELLULAR RESPONSES 
 

Surface modification is an extensively researched approach in order to overcome 
the limitations, and improve the performance of orthopedic and dental implants. It is at 
the surface of the implant materials that the initial interactions of tissues or body fluids 
take place. Therefore, surface properties of biomaterials are the important factors that can 
control these biological responses. Molecular imprinting is a surface modification 
technique that creates specific recognition sites on the surface of biomaterials. To 
develop the recognition sites, a functional monomer is assembled with template 
biomolecule and then crosslinked. After removal of the template, the surface can rebind 
the molecules. Therefore, desired reactions can be initiated at the interface between tissue 
and implants by modifying surfaces to selectively bind certain types of biomolecules, 
such as proteins. The objective of this project was to observe the potential of molecular 
imprinting technique for creating biomaterials that can recognize specific biomolecules. 
Fluorescently labeled lysozyme or RNase A was used as a template biomolecule and the 
protein-imprinted scaffolds were fabricated by sol-gel processing. To interpret the density 
of binding sites created, the quantity of surface-accessible protein was determined. The 
amount of protein available on the surface was proportional to the amount loaded. 
Protein-imprinted scaffolds were evaluated for their ability to selectively recognize the 
template biomolecule. Further, for these selectivity studies, a combination of the 
imprinted protein and a competitor protein were rebound to the polysiloxane scaffolds. 
The template protein rebound to the surface was measured more than twice as much as 
competitor. These scaffolds were then tested to understand their interaction with cells. 
The results of DNA and alkaline phosphatase activities indicate that the scaffolds thus 
developed support growth and adhesion of osteoblastic cells. These initial selectivity and 
cytocompatibility studies show the potential of molecular-imprinted polysiloxane 
scaffolds to be used as tissue engineered materials for stable and controlled interactions at 
the tissue-implant interface. 
 
KEYWORDS: Molecular imprinting, Polysiloxane, Sol-gel processing, Tissue-implant 
interface, Cytocompatibility 
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 CHAPTER 1. INTRODUCTION 
 
 

Metals, ceramics, polymers and composites have been used as hard tissue 

replacements. Metallic biomaterials are dominant as load-bearing implants for bone. 

There are two series of factors at the interface of bone tissue and implants. One is the host 

response to the implants, and the other is the material response to the host [1, 2]. When 

biomaterials or medical devices are implanted, they contact the body fluids, and then the 

proteins from blood and the fluids adsorb on the surface of the materials rapidly [3]. 

During repairing of the gap between implants and tissues, fibrous encapsulation and 

disruption of the newly forming tissues can occur [2]. Those events mentioned above can 

result in undesirable local and systemic biological responses, such as aseptic loosening 

and carcinogenesis, at the interface between tissues and dental or orthopedic implants [4]. 

Biomaterials for tissue engineering applications have been developed in order to 

provide a stable interface after implantation of the materials. Tissue engineering is a field 

that develops biological substitutes with applying the principles of engineering and the 

life sciences. Hence, biomaterials play an important role in the strategies of tissue 

engineering [5]. As one of the tissue engineering approaches, the surface modification of 

such materials has been executed. Shin et al. reviewed materials modified with 

biomolecules to elicit specific cellular responses and direct tissue formation. The paper 

showed that surface modification of biomaterials with bioactive molecules has been 

useful for tissue engineering applications, but several challenges, such as designing 

adhesion molecules for specific cell type which lead to tissue regeneration, still remain 

[6]. Molecular imprinting is a technique for preparing substrates for selective binding of 

particular biomolecules. In case of protein, the technique has met with only limited 

success, such as Shi et al. who investigated surfaces that could recognize specific proteins 

[7]. Most studies have used methacrylate polymers to fabricate molecularly imprinted 

materials [24-27], and a few studies used sol-gel procedure to design the materials [21-

13]. Though some studies show the potential molecular selectivity of the imprinted 

materials using sol-gel processing [22], no research that observes the cell behavior on the 

molecularly imprinted scaffolds has been shown. 
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Therefore, the aim of this study was to develop and characterize protein-imprinted 

biomaterials to enable selective binding of biomolecules using lysozyme and RNase A as 

model templates. Cellular responses to fabricated materials were also studied for initial 

cytocompatibility tests.   
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CHAPTER 2. BACKGROUND AND SIGNIFICANCE 
 
 

Bones are connective tissues primarily composed of collagen protein matrix 

(osteoid) that is impregnated with hydroxyapatite-like mineral. Bones have three types of 

bone cells as well as blood-forming cells in the central marrow cavities [8]. Osteoblasts 

cells are responsible for bone formation. When these cells are surrounded by calcified 

matrix, they are differentiated to osteocytes. Osteoclasts are cells that resorb the bone [8]. 

One of the functions of bone is supporting the human body. However, bones can break or 

fracture when high loads that they cannot bear are applied to them or when there is 

repeated force. Thus, in order to repair and fix the defective bones, special therapies of 

bone grafting, including autografts, allografts, xenografts and synthetic bone materials, 

are needed, and these therapies have been used in orthopedic surgery [9].  

There are three mechanisms of bone generation when bone grafts are used to 

repair bone defects [10]. The first mechanism is osteogenesis. It involves the provision of 

cells that direct the production of new bone by osteoblasts. The second mechanism, 

called osteoconduction, provides a scaffold or substrate that allows bone growth by 

osteogenic cells. Osteoconductive grafts consist of calcium sulfate, calcium phosphate, 

hydroxyapatite, and other bioceramic compounds. The third mechanism is osteoinduction, 

which includes factors that induce the differentiation of stem cells and other 

undifferentiated cells into osteoblasts. Mesenchymal stem cells and bone morphogenetic 

proteins are examples of osteoinductive grafts [10]. 

Bone grafts that provide for bone generation by these mechanisms could be 

procured from many sources and used for implant operations. There is a surgical 

procedure called autograft in which tissue is replaced by tissue from another part of 

patient’s body. This procedure offers biological advantages so it does not cause any 

immune reaction. However, obtaining the grafts needs another surgical procedure and 

brings up complications such as limitation of donor sites [4]. Allograft is a transplant 

from a donor of the same species. The graft is able to have the property of 

osteoconductivity, but there is the possibility of rejection or transmission of diseases [10]. 

Xenograft is a tissue, such as bovine-derived bone, obtained from a different species [4, 

11]. It is also used as a temporary graft for coverage of wounds such as porcine 
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xenografts [11]. Synthetic materials have been also developed for bone graft substitutes 

[4, 10]. Calcium phosphates, hydroxyapatite, polymers, demineralized bone and collagen-

based materials have been often used as synthetic substitute materials [4]. These 

materials have been successfully used as scaffolds in orthopedic and dental fields [12].  

Synthetic biomaterials have been used when organs or tissues of the body are 

damaged or show defects. Early biomaterials, including silicones, polyurethanes, nylon 

and stainless steel, were not designed for use in human body or organs. Instead, they had 

been used for machines, such as airplanes or automobiles. In the 1960s, biomaterials 

began to be designed for use in the body [11]. This naturally resulted in making 

biomaterials possible to be used in many fields such as vascular, orthopedic and dental 

materials and controlled drug delivery [13]. Hench et al. classified the biomaterials into 

three generations. First-generation biomaterials were developed to be bioinert; they had 

the least effect on toxic response and immune response to the foreign body. Second-

generation biomaterials were considered to be resorbable or bioactive materials. Third-

generation biomaterials are resorbable and bioactive, so they are being designed to 

activate and stimulate specific cells and biomolecules [11, 14].  

Three-dimensional scaffolds are widely used for synthetic materials [15]. Porous 

scaffolds can support proliferation and differentiation of cells and enhance bone tissue 

formation [16]. When scaffolds are fabricated, the characteristics, such as pore size, 

porosity and surface roughness, should be considered. Pore size of scaffolds should be at 

least 100 µm, which is large enough to allow cells to grow into the bone structure [17]. 

For in vivo osteoconduction, optimal pore size of scaffolds is approximately 150 to 500 

µm [4, 15]. Interconnectivity of porous scaffolds is one of the crucial factors for cell 

distribution, cell metabolism and nutrient diffusion. The mechanical stability is also 

important for tissue formation of new bones [4, 16]. Scaffolds including such properties 

are necessary as carriers of cells in the tissue engineering area [15].  

Tissue engineering is the application of engineering and life sciences in order to 

develop biological substitutes. Tissue engineering offers the potential to overcome 

replacement of damaged or lost tissue function [5, 11]. Use of isolated cells or cell 

substitutes, tissue-inducing substance and cells placed on or within matrices are three 

general strategies to create new tissue in tissue engineering field [5]. Bone tissue 
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engineering which typically uses an artificial extracellular matrix (scaffold) such as 

ceramics or polymers has been researched widely [16]. 

 
 
2.1 Surface Modification 
 

Medical devices for orthopedic and dental applications are required to have good 

mechanical properties since the function of the bone is for load-bearing. Thus many 

metallic and polymeric materials have been designed for medical devices. However, 

undesired reactions at the interface between biological system and the surface of the 

biomaterial occur in many cases when biomaterials are implanted in the body [4]. 

Therefore, biomaterial research has high interest in modifying the surface of the materials 

that come in contact with body fluids [18, 19]. In order to provide desirable 

characteristics on the biomaterials surface, the process of changing the existing 

characteristics is required [4]. The mechanical properties of implants can remain without 

influence when altering the outermost surface composition of biomaterials [3]. The 

surfaces of biomaterials are mainly modified either in order to prevent the failure of 

implanted biomaterials or to incorporate a specific functionality onto biomaterials for 

binding tissues [3, 4]. Therefore, surface modification technique is applied to improve 

biological, chemical and mechanical properties of implants [20]. Various surface 

modification technologies are available such as mechanical treatment, thermal spraying, 

sol-gel, chemical treatment and ion implantation [20]. The following two approaches are 

examples of surface modification using sol-gel process and molecular imprinting 

technique. Advincula et al. deposited titanium oxide on the surface of silicon wafers by 

sol-gel processing. Ultrathin titanium oxide was prepared by reaction of metal alkoxides 

with a hydroxylated surface. This surface was then modified by self-assembled 

monolayers (SAMs) of silanes with different functional groups. This study showed the 

morphology trends of the surface and the properties of protein adhesion on the modified 

titanium oxide surface [19]. Bures et al. applied a surface modification technique which 

includes molecular imprinting methods by addition of tethered PEG chains on polyacrylic 

acid hydrogel. The prepared PEG star polymer gels by gamma-irradiation were used for 

protein delivery. Thus the materials including micro- or nanoparticulate carriers were 
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developed for bioadhesive drug delivery systems. This group researched the properties of 

star polymer hydrogel as proper materials for molecular imprinting [21].  

 
 

2.2 Molecular Imprinting 
 

Molecular imprinting is a technique for preparing synthetic polymers with 

selective recognition or binding sites that allow the development of biomimetic 

compounds as artificial receptors [22]. The technique can manipulate the shape, size and 

chemical functionality of a polymer matrix depending on template molecules. The 

molecular imprinting process includes a complex that is an assembly of functional 

monomer with template molecules in solution, and polymerization with a large quantity 

of crosslinkers to fix the complex as a stable polymeric material [22, 23]. The complex 

including functional monomer and template molecules is categorized, non-covalent and 

covalent approaches [23, 24, 25]. Non-covalent interaction includes hydrogen-bonding, 

electrostatic and hydrophobic interaction in the complex [25]. In covalent approach, the 

template molecules are covalently bound to the functional monomer [26]. Removal of the 

template molecules from the synthesized polymer by a washing procedure affords 

cavities as binding sites. The cavities have specific shape and chemical complementary to 

the template molecules [23]. Though most approaches use small molecules [27, 28], 

macromolecules, such as proteins, are highly interesting as template molecules for 

molecular imprinting [28]. The cavities, which generated using macromolecules, also 

have the ability to selectively rebind the template molecules [22]. Figure 1 shows the 

schematic representation of the creation of recognition sites by molecular imprinting 

procedure [29]. Molecular imprinting technique seeks to prepare polymers that are able to 

recognize specific polypeptides and protein [29]. Siloxane based polymer is formed by 

catalyzing (with acid or base) a series of silane monomer during sol-gel processing 

(section 2.4). Sol-gel processing can be performed to develop versatile materials, and 

there are several approaches that involve molecular imprinting polymers related to sol-gel 

processing [22, 30]. Cummins et al. compared the molecular imprinting of acrylic and 

sol-gel based polymers. The group expected better selectivity on sol-gel polymerization 
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system in future work [22]. Therefore, molecular imprinting technique by sol-gel 

processing deserves more research. 

 
Figure 1. Schematic diagram of the molecular imprinting [29]. 

 
 
2.3 Protein Adsorption 
 

Proteins are biological macromolecules composed of carbon, hydrogen, oxygen, 

nitrogen and small amounts of other elements. The proteins are formed by the linking of a 

large number of small subunits, 20 common amino acids including amino group, 

carboxyl group and α carbon, to form a long chain [8]. There are four levels of protein 

structure. The primary structure is a linear sequence of amino acids. The secondary 

structure consists of bending chain of α-helix and β-sheet due to hydrogen bonding 

between near amino acids in the same chain. The tertiary structure, twisting and folding 
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of the chain, results from ionic interaction, salt bridge, hydrophobic interactions, 

hydrogen bonding and covalent disulfide bonds between more distant amino acids. The 

quaternary structure is similar to tertiary structure but composed of two or more 

polypeptides chains. Figure 2 shows a structure of lysozyme which includes some of the 

protein structure levels [8, 31, 32]. 

 
Figure 2. The structure of lysozyme showing α helix, β sheet and β bend from protein 

data bank (PDB ID: 193L). 
 

The molecular weight of molecules plays an important role in adsorption. 

Molecular weight is the sum of the atomic weights of all the atoms in a protein, and 

reflects the size of a protein [8, 31]. Adsorption is a characteristic of solid surface that the 

molecules tend to stick on the surface at the solid-liquid interface (Figure 3). At the 

interface of biological systems with the solid surface of biomaterials, protein adsorption 

quickly occurs after implantation [33]. Several domains, which maybe hydrophobic, 

charged and polar, exist at the surface of protein. These are the basis of protein 

adsorption with a similar domain-like character at a solid surface. Protein adsorption can 

be affected by physicochemical factors, such as pH and ionic strength [31]. In biological 

fluids, soluble proteins in blood plasma are primarily involved in protein adsorption to 

implanted biomaterials. The physicochemical character of biomaterials also influences 

the orientation and conformation of protein adsorption [34]. Desired cellular responses 

can be induced by control of nonspecific protein adsorption. Therefore, biomaterials can 
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stimulate responses of osteoblast cells at the tissue-implant interface if the materials have 

selectivity for particular biomolecules such as osteotropic molecules [2]. 

 
 

Figure 3. Surface reaction of molecular adsorption during which molecules stick on the 
surface. 

 
 
2.4 Sol-gel processing 
 
 The best merit of sol-gel processing is the easy and convenient method of making 

functionalized inorganic materials at room temperature [35]. Sol-gel chemistry has been 

mainly used to prepare conventional glasses, ceramics fibers and many other new 

systems since its discovery in the 1800s [36, 37]. As the name ‘sol-gel’ denotes, ‘sol’ 

(solution) refers to a dispersion formation of colloidal suspension, and ‘gel’ refers to 

assembly of the sol to form an interconnected polymeric network [36]. Alkoxysilanes, 

such as tetramethoxysilane (TMOS) and tetraethoxysilane (TEOS), are the most widely 

used metal alkoxides as crosslinkers (precursors) for sol-gel processing [38]. TMOS is 

more expensive than TEOS, sometimes generates dangerous fumes, and causes blindness. 

Hence, TEOS is shown to be the preferred one for sol-gel processing in many 

publications [39].  

Sol-gel process usually involves three reactions. These are hydrolysis, alcohol 

condensation and water condensation, as shown in Figure 4 [36, 38]. Through the 

hydrolysis reaction, alkoxide groups (OR) are replaced with hydroxyl groups (OH). 

Silanol groups (Si-OH) produce siloxane bonds (Si-O-Si) and water or alcohol through 

water and alcohol condensation, respectively [38]. The hydrolysis and condensation 

reactions that lead to a gel are affected by pH. Hydrolysis can be rapid when acids or 

ammonia are used. For condensation, the approximate pH domains were divided into 
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three, pH<2, pH 2-7 and pH>7. Gel time decreases steadily between pH 2 and ca. pH 6, 

and the condensation rate is proportional to [OH-]. The particles of silicas are positively 

charged at low pH and negatively charged at high pH. Above pH 7, highly condensed 

particles are formed in a few minutes. The polymerization rate is proportional to [H+] 

below pH 2 [35].  

 
Hydrolysis reaction 

≡ Si-OR + H2O → ≡ Si-OH + ROH 
 

Alcohol condensation 
≡ Si-OH + RO-Si → Si-O-Si ≡ + ROH 

 
Water condensation 

≡ Si-OH + HO-Si → Si-O-Si ≡ + H2O 
 

Figure 4. Three reactions of alkoxysilanes [38]. 
 

During sol-gel processing, the structure and properties of gels change with aging. The 

chemical reactions continue after gelation, thus causing strengthening, stiffening, and 

shrinkage of the network during aging. The process of drying also leads to shrinkage of 

materials as a volume of liquid is evaporated from the body of the materials [38]. 

 
 
2.5 Biocompatibility 
 

Biomaterials and medical devices, such as synthetic bone grafts and artificial 

blood vessels, are required to establish biocompatibility because they contact tissues of 

human body directly or indirectly [40]. There are several definitions, and emphases of 

biocompatibility have changed in past years. For example, in 1987, Williams defined 

biocompatibility as “the ability of a material to perform with and appropriate host 

response in a specific application.” [11]. Later, Ratner defined biocompatibility as “the 

exploitation by materials of the proteins and cells of the body to meet a specific 

performance goal.” [41]. Biocompatibility involves two principal areas. The first 

principle is biosafety, and the other principle is biofunctionality. Biosafety includes the 

elimination of harmful effects of biomaterials on the biological system. Biofunctionality 

means the ability to elicit proper host response [40]. In order to evaluate the 
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biocompatibility of the synthetic biomaterials, both in vivo and in vitro tests have been 

performed [42, 43, 44]. In vitro biocompatibility tests are widely used in the laboratory to 

predict in vivo responses. Various types of cell culture methods are usually applied for in 

vitro biocompatibility (cytocompatibility) tests [45]. Therefore, in the initial step of 

cytocompatibility testing of biomaterials, proper types of cells are cultured for the 

evaluation [46]. According to cytotoxicity, cell morphology, adhesion and viability tests, 

cytocompatibility of biomaterials can be assessed [45]. Cytocompatibility can also be 

evaluated by the morphology of cell lines and observation of the cell interactions on the 

surface of biomaterials using scanning electron microscopy (SEM) [44]. International 

Standardization Organization (ISO) and American Society for Testing and Materials 

(ASTM) define the method of tests for some biological evaluations of medical and dental 

devices [47]. Hence, ISO categorizes the evaluation of biocompatibility including 

morphological assessment of cell damage, measurement of cell damage, cell growth and 

specific aspect of cellular metabolism. Cytocompatibility is generally performed by cell 

adhesion, cell spreading, cell proliferation and cell biosynthetic function tests [40]. For 

the specific function of a medical device, cells relevant to the function of the device 

should be properly chosen for the test. Thus, osteoblastic cells would be the logical 

choice for biofunctionality testing of bone grafts or bone biomaterials [42].  

 
 

2.6 Significance 
 
 Tissue engineering is becoming more critical in biomaterials research. 

Biomaterials for tissue engineering have been widely studied. Ideally, biomaterials 

should have ability to provide specific biological responses when they are implanted into 

the body. In reality, however, trivial to significant problems remain at the interface 

between the surface of materials and tissue of the body. Surface modification on bone 

implants may produce controlled interaction on orthopedic and dental applications. By 

using molecular imprinting, which is one of the surface modification techniques, on the 

bone biomaterials, we may design the biomaterials that support specific and desired 

cellular responses at the interface. As shown in Figure 5, the materials would mostly bind 

the round (☻) molecules, which are used as template molecules, in a solution where 
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several different types of molecules exist. Hence, if cell surface molecules, such as 

osteotropic protein receptors, are used as templates, the material would be selective for 

the specific cell type.  

 

 
Figure 5. Binding of specific molecules (left) and cells (right) on molecularly imprinted 

biomaterials. 
 

Therefore, the objective of this research was to develop molecularly imprinted 

polysiloxane biomaterials that assemble crosslinker (TEOS) and functional monomer 

(APS) with template biomolecules (proteins) using sol-gel processing. The biomaterials 

were designed to have ability to discriminate between template proteins and competitor 

proteins. Cytocompatibility of the biomaterials was then evaluated. 
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CHAPTER 3. MATERIALS AND METHODS 
 
 
 
3.1 Fabrication of polysiloxane scaffolds 
 

The polysiloxane scaffolds, which could be imprinted with template biomolecules 

and have selectivity for the biomolecules, were developed after trying various mixtures of 

tetraethoxysilane (TEOS) and γ-aminopropyltriethoxysilane (APS). The best composition 

of scaffolds was determined at TEOS (Fluka; Milwaukee, WI) to APS (Sigma; St. Louis, 

MO) volume ratio of 4:1 since the composition was useful for protein loading, selectivity 

and cytocompatibility tests. Proteins, such as lysozyme (Sigma) and ribonuclease A 

(RNase A; Sigma), were used as template molecules.  

 
3.1.1 Polysiloxane scaffolds 
 

Figure 6 shows the diagram of the process used to fabricate the scaffolds. 

Polysiloxane scaffolds were fabricated by a two-step sol-gel procedure. Solution I, which 

included 36.5% of TEOS, 6.5% of deionized water, 9.1% of 0.1 M HCl, and 11.1% of 

absolute ethanol in a cylindrical plastic vial, was mixed on an orbital shaker at room 

temperature for 24 hours. In this step, TEOS, as crosslinker, was hydrolyzed. In the 

second step, 9.1% of APS and 27.7% of sodiumdocecylsulfate (SDS; Sigma) were 

prepared to create solution II, which then was added to solution I after 30 minutes. APS 

was used as a functional monomer, and SDS was used in this step as a foaming agent due 

to the need for macroporosity for cell ingrowth. Mixtures of solution I and II which were 

containing volume ratio of 4:1 at TEOS to APS formed gels in 15 seconds. After 

covering the vials, the gels were aged at room temperature for 24 hours and then dried in 

an oven at 40˚C for 48 hours. When scaffolds were dried, a glass-like surface covered the 

samples. This caused different properties between inside and outside surfaces of the 

scaffolds. In order to remove the glass-like surface, the upper and bottom parts of the 

scaffolds were ground off using ECOMET 3 variable speed grinder-polisher (Buehler) 

using 600 grit silicon carbide papers.  
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Figure 6. The fabrication of polysiloxane scaffolds. 

 
3.1.2 Imprinted scaffolds 
 

Protein-imprinted samples were also fabricated when blank polysiloxane scaffolds 

were made. The various amounts of lysozyme and RNase A that were added to the 

scaffolds ranged from 0.05 to 6 mg per sample. The protein was added to solution II right 

before mixing with solution I. After the mixture gelled, it was aged at room temperature 

for 24 hours and dried for 48 hours. For the protein loading and selectivity tests, labeled 

proteins (section 3.2) were needed. In this case, the gels were stored in a dark place 

because the labeling dye compounds were light sensitive. It was not necessary for the 

scaffolds to be imprinted with labeled protein for the cytocompatibility tests. Then the 

aged gels were dried and ground. All samples were washed with phosphate buffered 

saline (PBS), pH 7.4, after grinding. 

 
 
3.2 Protein labeling  
 

In order to determine the amount of protein available on the surface, the proteins 

were fluorescently labeled with Alexa Fluor 350 (Molecular Probes; Eugene, OR) before 

- APS 
- 0.1M SDS 
- w/wo protein 

Shaking

- TEOS 
- 0.1M HCl 
- dH2O 
- EtOH 

Drying
Aging 

1-step: (Solution I) 
2-step 

40ºC

Solution I 

Grinding

(Solution II)
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imprinting. Molecular weight of lysozyme is about 14.3 kD, and RNase A is about 13.7 

kD. These two proteins were chosen due to the similarity in size and the cost 

effectiveness. 

 
3.2.1 Lysozyme labeling 
 

The concentration of the protein in reaction buffer was 20 mg/mL. Thus 20 mg of 

lysozyme was dissolved in 1mL of 0.1M carb-bicarbonate buffer, pH 8.5. The reactive 

dye solution was prepared by dissolving amine-reactive compound, Alexa Fluor 350, in 

dimethyl sulfoxide (DMSO) at 1mg/100µl. While the lysozyme solution was being stirred, 

100 µl of the reactive dye solution was gradually added. Then the solution was incubated 

for an hour with continuous stirring at room temperature. Unreacted labeling reagent 

needed to be separated from the protein solution. Hence, the solution was centrifuged 

with an Amicon Ultra-15 centrifugal filter device (Millipore; Bedford, MA), which has 

10,000 molecular weight cut off (MWCO),  in a Marathon 21 K/R centrifuge (Fisher 

Scientific, Pittsburgh, PA) at 3000 rpm (revolution per minutes) and 25˚C for 6 hours. 

The solution was washed with the carb-bicarbonate buffer three times during 

centrifugation. The protein solution needed to be generally stored under the same 

conditions (-10˚C in this study) used for the parent protein [48]. The concentration of the 

protein solution was determined using Bicinchoninic Acid (BCA) protein assay reagent 

(Pierce, Rockford, IL). This working reagent was used by mixing of 50 parts reagent A 

with 1 part reagent B. Then a stock bovine serum albumin (BSA; Pierce) solution was 

serially diluted two-fold in order to prepare a set of protein standards. A volume of 10 µl 

of each standard and each protein solution sample was added to a 96-well plate (Costar; 

Cambridge, MA), and then a volume of 200 µl of prepared working reagents was added 

each well. The well plate was covered and incubated at 37˚C for 30 minutes. The plate 

was read absorbance at 570 nm by a Dynatech MR5000 spectrophotometer (Chantilly, 

VA). 

 
3.2.2 RNase A labeling  
 

Using methods similar to those for labeling lysozyme, 20 mg RNase A was 

dissolved in 1 ml of 0.1M carb-bicarbonate buffer, pH 8.5, and 1 mg of Alexa Fluor 350 
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in 100 µl of DMSO was added to the RNase A solution and kept stirring for an hour. The 

protein solution was also centrifuged with an Amicon Ultra-15 centrifugal filter device in 

a Marathon 21 K/R to filter the Alexa Fluor 350 label that did not bind to the protein. 

RNase A dissolved into the buffer very easily so the solution was very clear and the 

filtering time was shorter than the filtering time of lysozyme. The concentration of the 

RNase A solution was then determined by BCA protein assay. The solution was stored in 

the freezer when not used right after the preparation. 

 
 
3.3 Protein loading 
 

Labeled template molecules, lysozyme and RNase A, with Alexa Fluor 350 were 

added to the scaffolds in increasing amounts (section 3.1.2). The amount of protein 

available on the surface of scaffolds after loading was measured by fluorometry. The 

imprinted scaffolds were immersed in 0.4 mg protease (Sigma) in 1 ml of 0.1M carb-

bicarbonate buffer, pH 8.5, for 24 hours. The amount of protein released from the 

scaffold surfaces was observed after 3 hours and 24 hours. In order to calculate the 

amount of protein exposed to the surface of materials, another set of protein standards 

was obtained. The concentration of labeled protein solution was measured by BCA assay 

and used for imprinting scaffolds in section 3.1 and 3.2. The labeled protein solution was 

serially diluted two-fold for the standard. Fluorescence of the standard was measured 

using a fluorometric plate reader (Spectra MAX Gemini XS; Sunnyvale, CA) at 

excitation wavelength of 346 nm and emission wavelength of 442 nm. Then the 

fluorescence of protein released from each scaffold was also measured by the 

fluorometric plate reader.  

 
 

3.4. Characterization of the scaffolds 
 
3.4.1 Scanning Electron Microscopy (SEM) 
 

Polysiloxane scaffolds with (imprinted) or without (blank) protein, were 

examined using SEM. A blank scaffold, 1 mg and 10 mg lysozyme-imprinted scaffolds 

were mounted on SEM stubs with colloidal graphite. Scaffolds on the stubs were sputter-
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coated with gold in argon gas using the Emscope sc 400. Then samples were examined 

with Hitachi S-3200 (Tokyo, Japan) at an accelerating voltage of 20 kV. 

 
3.4.2 Surface Area 
 

The surface areas of scaffolds were measured by nitrogen gas adsorption. 

Scaffolds (blank, 0.1, 1 and 6 mg of both lysozyme- and RNase A-imprinted) were 

placed in an oven at 40 ºC for three days and then under vacuum for 24 hours. The weight 

of each scaffold was measured after desiccation in a sample tube at 120 ºC for 24 hours. 

The surface area was measured with TriStar 3000 (Micromeritics; Norcross, GA) and 

calculated using the BET (Brunauer-Emmett-Teller) Method. 

 
3.4.3 Porosity 
 

The porosity measurements of scaffolds were made by Autopore IV 9500 

mercury intrusion porosimeter (Micromeritics). Blank, 0.05 mg of lysozyme- and RNase 

A-imprinted scaffolds were completely dried at 40 ºC for three days, and then tested. 

Three samples were place in a 5cc penetrometer (07-0649). The porosity of a material 

was characterized by applying various levels of pressure with intruding mercury into the 

pores of the sample. As raising the pressure of the penetrometer, the mercury intrudes 

from the largest pores to the smallest pores. Then the mercury porosimetry can determine 

total intrusion volume, average pore diameter, density and porosity of the sample. 

 
 
3.5 Protein Selectivity 
 

In order to examine the specificity and selectivity of the imprinted scaffolds, 

rebinding solutions were prepared.  The rebinding solutions contained labeled template 

protein and labeled competitor protein. The proteins for the solutions were labeled with 

other dyes that have different excitation and emission wavelengths than the labeling dye 

using for protein loading. Similar to the method described in section 3.2.1, 20 mg of 

lysozyme was labeled with orange Alexa Fluor 488 dye (Molecular Probes), and 20 mg 

of RNase A was labeled with purple Alexa Fluor 594 (Molecular Probes). The excitation 



www.manaraa.com

 18

and emission wavelengths of Alexa Fluor 488 were 495 nm and 519 nm. The 

wavelengths of Alexa Fluor 594 were 590 nm and 617 nm.  

For the lysozyme-imprinted scaffolds, labeled lysozyme was used as template 

protein and labeled RNase A was used as competitor protein in the rebinding solution. 

The concentration of both proteins in rebinding solutions was kept constant at the 

maximum amount of protein released from each samples. The ratios of template to 

competitor protein were 1:0, 1:1 and 0:1. In order to check the selectivity of scaffolds for 

another protein, RNase A-imprinted scaffolds were used for another selectivity test. This 

time the rebinding solutions including template protein (RNase A) and competitor protein 

(lysozyme) were prepared at template to competitor protein ratios of 1:0, 3:1, 1:1, 1:3 and 

0:1. The prepared scaffolds for each selectivity test were immersed in the rebinding 

solutions for 24 hours on an orbital shaker. Then the solutions were aspirated and 

scaffolds were rinsed three times with PBS, pH 7.4. Like the protein loading test, 0.4 mg 

protease in 1 mL of 0.1 M carb-bicarbonate buffer, pH 8.5, was added to digest proteins 

that rebound to the scaffolds. The amount of protein released from scaffolds into the 

protease solution was measured after 3 and 24 hours using the fluorometric plate reader. 

 
 
3.6 Cytocompatibility 
 

Basic cytocompatibility tests were conducted first to verify the ability of the 

scaffolds to support cell growth and activity. SaOS-2 osteoblastic cells (ATCC HTB-85; 

Manassas, VA) and C3H/10T1/2 cells (ATCC CCL-226) were prepared for the tests. 

 
3.6.1 Preparation 
 

SaOS-2 osteoblastic cells and C3H/10T1/2 (C3H) cells were cultured and 

passaged on T-75 cell culture flasks (Corning; Corning, NY). McCoy’s 5A medium with 

10% fetal bovine serum (FBS) (Gibco; Grand Island, NY) was used for SaOS-2, and 

Basal Eagle Medium (Gibco), which included 2 mM of L-glutamine and 10% heat-

inactivated FBS (FBS-HI) to destroy heat-labile complement proteins, was added for 

C3H cells. Several steps of scaffold preparation were taken before seeding cells on them. 

Because the pH of scaffolds was highly alkaline, the first step was to control the pH to be 
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more neutral. Samples needed to be in a very acidic environment in the beginning and 

then sterilized. Therefore, samples were placed in a 24-well tissue culture plate (Costar) 

with 2 ml PBS, and then 15 µl of 25% HCl was added to neutralize the scaffolds. The 

plate was shaken for 24 hours, and then the samples were rinsed three times with PBS, 

pH 7.4. Scaffolds were sterilized in the second step. The scaffolds were placed into a 

beaker with 20 ml of PBS and then autoclaved with slow exhaust using a Napco Model 

8000-DSE Autoclave. After the scaffolds in PBS were cooled down, the samples were 

immersed in cell culture medium for 48 hours. The medium was changed at least twice 

before the cells were seeded.  

The cultured cells in T-75 flasks were rinsed twice with PBS and detached from 

the surface of the flask with an enzymatic solution that contained 0.02 M Hepes, 0.15 M 

NaCl, 0.26 mM ethylene glycol-bis (β-aminoethylether) N,N,N’,N’-tetraacetic acid 

(EGTA), 0.5% w/v of polyvinyl-pyrrolidone (PVP-10) and 0.05% w/v of trypsin (Sigma), 

pH 7.6. The detached cells were added to a conical tube with medium and centrifuged at 

3000 rpm for 3 minutes to inactivate and remove the trypsin. Then, the cells were 

counted using a hemocytometer. The amount of 50,000 cells/well was seeded on plates 

and scaffolds. The seeded cells were cultured for 1, 3 and 7 days, and medium was 

changed every other day. 

 
3.6.2 DNA Assay 
 

Hoechst 33258 assay was used to determine DNA contents for the in vitro 

cytocompatibility experiments. The plates and scaffolds on which cells were seeded were 

carefully washed twice with warm (37 ºC) PBS, pH 7.4. Then 1 ml of high salt buffer, pH 

7.4, containing 0.05 M NaH2PO4, 2 M NaCl and 2 mM EDTA, was added to each well. 

Each well including cells and scaffolds was sonicated and stored in the freezer. All plates 

were run through three freeze-thaw cycles to lyse more cells after sonication. The cell 

lysates were centrifuged to precipitate the particles of the scaffolds using an Eppendorf 

5415 centrifuge. Serial two-fold dilutions of a standard DNA solution were added to 96-

well plates (Costar). Each supernatant of the samples was diluted two-fold with the high 

salt buffer, and added to the 96-wll plates. Then, a volume of 5 µg Hoechst 33258 per 1 

ml of high salt buffer was added to the each well. The plate was shaken gently and placed 
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at room temperature in the dark for 10 minutes. Fluorescence was measured at λex=356 

nm and λem=458 nm using a fluorometric plate reader. 

 
3.6.3 Alkaline Phosphatase (AP) Assay 
 

The osteoblastic activity of the cells was measured using the alkaline phosphatase 

assay.  The supernatant used for the Hoechst assay was also used for AP. A volume of 10 

µl of sample supernatant was added to wells of a 96-well plate. p-Nitrophenyl phosphate 

(pNPP) was added to 0.6 M 2-amino-2-methyl-1-propanol buffer (AMP), pH 10, to make 

a 10 mM working reagent, and then 0.01 M MgCl2·6H2O was added. A volume of 50 µl 

of working reagent was added to each well of the 96-well plate and then incubated at 

37˚C (Forma Scientific).  The color of the solution changed from clear to yellow, and 

absorbance was measured with a Dynatech MR5000 spectrophotometer at 410 nm after 

24 hours of incubation.  The values of the absorbance were converted to nmoles and then 

expressed in units as nmoles of substrate degraded per µg DNA. 

 
3.6.4 Scanning Electron Microscopy (SEM) 

 
A special preparation was needed for the scaffolds on which cells were seeded. 

Samples were rinsed three times with warm (37 ºC) PBS, pH 7.4, and then immersed in 

warm (37 ºC) 2.5% glutaraldehyde (Sigma) in 1 M cacodylate buffer, pH 7.2, for an hour 

to fix the cells on the scaffolds. The samples were rinsed with 0.1 M cacodylate buffer 

three times at room temperature and then dehydrated using an ethanol series, 50%, 70%, 

90%, 95% and 100% of ethanol (10 minutes each step). Finally, samples were immersed 

in hexamethyldisilazane (HMDS, Polysciences, INC.; Warrington, PA) for ten minutes, 

and the samples completely air dried. Samples were placed on SEM stubs with colloidal 

graphite, sputter-coated with gold, and observed with Hitachi S-3200. 

 
 
3.7 Statistical Analysis 

 
One-way analysis of variance (ANOVA) was done using the computer application 

InStat (Graphpad Software, San Diego, CA). The Tukey-Kramer test was performed 

when the p-value was significant. 
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CHAPTER 4. RESULTS 
 
 
4.1 Fabrication of scaffolds 
 
4.1.1 Polysiloxane scaffolds 
 

As shown in the last photo in Figure 6, the fabricated polysiloxane scaffolds were 

white in color with a cylindrical geometry of 4.3 mm in height and 9 mm in diameter. 

Initially we found that the APS was highly alkaline, and hence the scaffolds were highly 

alkaline. Consequently, 0.25 M HCl was added to solution I instead of 0.1 M HCl in 

order to control pH during the fabrication of scaffolds. The mixture of solutions I and II 

for these scaffolds was about pH 7.8.  The whole scaffolds were transparent, like a glass, 

and had non-interconnected pores on the surface (Figure 7). When the scaffolds were 

immersed in a liquid (dH2O or PBS), they were fractured into little particles. Some 

preliminary experiments with the particles showed that the particles could not release 

enough protein for quantification test, so the amount of protein rebound was also 

extremely small.  

 
 

Figure 7. SEM image showing morphology of glass-like scaffolds when the mixture of 
solutions I and II was pH 7.8. 

 

Figure 8 shows the scaffolds fabricated with 0.1 M HCl in solution I, which were 

white and covered with a glass-like surface. The mixture solutions I and II for this 

scaffold was pH 9.5. The glassy covering affected the amount of protein that could be 
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released from the materials (section 4.2). Attempts to cut off the glass-like surface with 

razor blades were unsuccessful. Thus we ground the surface with a polisher. The surface 

of initial scaffolds had ruffled textures and did not show any pores. On the other hand, the 

scaffolds after grinding were highly textured and included micro-, meso- and macro-

pores (Figure 9). Porosity of the scaffolds was approximately 40%. The scaffolds could 

stay in high temperature (150 ºC), and 80% of the fabricated scaffolds could be soaked in 

a liquid for a long time (around 4 weeks) without changing their shape, such as cracking. 

 
 

Figure 8. SEM image showing morphology of polysiloxane scaffolds before grinding.  
 

 
 

Figure 9. SEM image showing morphology of polysiloxane scaffolds after grinding.  



www.manaraa.com

 23

4.1.2 Imprinted Polysiloxane Scaffolds. 
 

Protein (lysozyme) was added to the scaffolds during the sol-gel process. Figure 

10 shows protein embedded on the surface of a scaffold, and Figure 11 shows the surface 

after the embedded protein was exposed to the protease solution. Submicron-sized pores 

were revealed after digestion of surface-exposed protein with the enzyme. The porosity 

of imprinted scaffold was approximately 40%, similar to blank materials. 

 
 

Figure 10. SEM image of protein (lysozyme)-imprinted scaffolds before exposure to 
protease. 

 

 
 

Figure 11. SEM image of protein (lysozyme)-imprinted scaffolds after digestion of 
protein. 
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4.2 Protein loading 
 
4.2.1 Lysozyme-imprinted scaffolds 
 

Protein was loaded with increasing amount of lysozyme (0.1, 0.4, 1, 3 and 6 mg) 

in order to determine the effect of loading on the surface of the scaffolds. Then the 

scaffolds were digested in protease solution for 3 hours and 24 hours. Figures 12 and 13 

show that the amount of protein released into the protease solution depended on the 

amount of protein added to the mixture of solutions I and II. First we tried to release 

protein for only 3 hours due to the method obtained from [49], but then we found 

digestion was not complete at this time. Approximately 15% of lysozyme loaded to the 

sample was available on the surface after 3 hours. Therefore protein digestion was 

measured at both 3 and 24 hours. Figure 12 shows the amount of protein released after 3, 

and Figure 13 shows the amount released after 24 hours. The amount of protein exposed 

to the surface of scaffolds increased with the increasing the amount of protein loaded on 

the surface. There was no statistically significant difference between the releasing after 3 

hours and 24 hours when less than 1 mg of lysozyme was added to the scaffolds. 

However, when more than 1 mg of lysozyme was loaded, the amount released after 24 

hours was approximately five times greater than the amount after 3 hours (p<0.001). 

Most of the lysozyme (80%) that was added to the scaffolds was released from the 

materials after 24 hours.  
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Figure 12. Amount of lysozyme released from the surface of scaffolds after 3 

hours of digestion. 
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Figure 13. Amount of lysozyme released from the surface of scaffolds after 24 hours of 

digestion. 
 
 

4.2.2 Comparison of protein releasing 
 

Before the scaffolds were ground, they were covered with a glass-like surface. 

Thus the imprinted protein was not exposed well. The comparison of the amount of 

protein released before and after grinding of scaffolds is shown in Figure 14. Both sets of 

data show an increase in protein released according to the amount of protein loaded (after 

3 hours of digestion). However, the amount of lysozyme exposed after grinding the 
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samples was over twenty times greater than that before grinding (p>0.05: 0.1 mg loading, 

p<0.01: 1 mg loading). Thus removing the glass-like surface helps expose potential 

protein recognition sites. 

 

0

1

2

3

4

5

6

7

0.1 mg 0.3 mg 0.5 mg 1 mg
Lysozyme added (per scaffold)

P
ro

te
in

 e
xp

os
ed

 (µ
g)

 
Figure 14. Comparison of the amount of protein exposed to the surface before and after 

removing the glass-like parts (top). The bottom graph magnifies the results before 
removing the glassy covering. 

 
 
4.2.3 RNase A-imprinted scaffolds 
 

RNase A was also imprinted into scaffolds. A mass of 0.05, 0.1 or 1 mg of RNase 

A was loaded. The protein exposed at the surface of the scaffolds was measured after 3 
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and 24 hours of digestion as well. Figure 15 shows that RNase A-imprinted scaffolds also 

released more protein when the amount of RNase A loaded increased. Approximately 3% 

of RNase A added to the scaffolds was available on the surface after 3 hours, and 

approximately 9% of loaded protein was accessible after 24 hours of digestion. Thus, the 

amount of RNase A released after 24 hours was approximately three times greater than 

the amount after 3 hours. If comparing the results of protein loading between lysozyme- 

and RNase A-imprinted scaffolds, the amount of lysozyme released was approximately 

six times more than that of RNase A after 3 hours. The amount was almost ten times 

more after 24 hours.  
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Figure 15. Amount of RNase A released from the surface after 3 hours (top) and after 24 

hours of digestion (bottom). 
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4.3 Surface Area  
 

The surface area of scaffolds was measured by nitrogen gas adsorption and 

calculated using the BET method. The results are shown in Figure 16. Seven types of 

samples (blank, 0.1, 1 and 6 mg lysozyme and RNase A loaded scaffolds) were tested. 

The average surface area of blank was 202.27 m2/g, and surface areas of 0.1 mg of 

lysozyme and RNase A-imprinted scaffolds were 182.05 and 190.82 m2/g. Average 

surface areas of 1 mg lysozyme- and RNase A-imprinted scaffolds were 129.3 and 

174.07 m2/g, and 6 mg of lysozyme- and RNase A-imprinted scaffolds were 186.06 and 

239.76 m2/g. However, there were no statistically significant differences (p>0.05). Table 

1 shows the average amount of protein released from each type of scaffold that was 

measured its surface area. The amount of protein per unit area was calculated in Table 2. 

The amount of protein released from a unit area of 1 mg lysozyme-imprinted (0.055 

mg/m2) were almost six times greater than that of  0.1 mg lysozyme-imprinted (0.00885 

mg/m2). When compared the amount of protein release from a unit area between 1 mg 

and 0.1 mg RNase A-imprinted scaffolds, the former (0.003532 mg/m2) was ten times 

greater than the latter (0.000319 mg/m2). 
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Figure 16. Surface area of blank and imprinted scaffolds. 
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Table 1. The amount of protein released from the surface of scaffolds. 

Imprinted scaffolds Non-imprinted scaffoldsProtein 
added Lysozyme (mg) RNase A (mg) Blank (mg) 
0.1 mg 0.231536 0.008284 
1 mg 0.737036 0.083688 
6 mg 3.715486 - 

 
0 

 
Table 2. The amount of protein per unit surface area. 

Imprinted scaffolds Non-imprinted scaffoldsProtein 
added Lysozyme (mg/m2) RNase A (mg/m2) Blank (mg/m2) 
0.1 mg 0.00885 0.000319 
1 mg 0.055128 0.003532 
6 mg 0.151969 - 

 
0 

 
 
4.4 Porosity 
 

As shown in Table 3, the porosity of each scaffold was approximately 40%, and 

the average pore size of blank was 6.19 µm, 0.05 mg RNase A-imrpinted scaffold was 

5.56 µm, and 0.05 mg lysozyme-imprinted scaffold was 5.46 µm. There were no 

statistically significant differences of porosity, and differences of pore size between two 

samples (p>0.05). 

 
Table 3. The porosity and pore size distribution of scaffolds. 

Scaffolds Blank  
(non-imprinted) 

0.05 mg RNase 
A-imprinted 

0.05 mg lysozyme-
imprinted 

Average pore size (µm) 6.19 5.56 5.46 
Porosity (%) 43 42 41 
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4.5 Protein selectivity 
 

In order to test the ability of the scaffolds to selectively bind their template 

molecules, scaffolds were imprinted with either lysozyme or RNase A and then exposed 

to solutions containing both proteins. These two protein molecules were similar in weight 

but different in chemical composition and shape.  

 
4.5.1 Lysozyme-imprinted scaffolds 

 
Protein selectivity was evaluated by measuring rebinding of both a particular 

protein and a competitor to the surface of imprinted scaffolds. According to the amount 

of protein digested from each sample (section 4.2), rebinding solutions were prepared. 

The scaffolds imprinted with 0.1, 1, or 3 mg lysozyme were exposed to solutions 

combining template (lysozyme) to competitor (RNase A) ratios of 1:0, 1:1, and 0:1. 

Figure 17 shows the result of protein selectivity test after 3 hours of digestion. When the 

rebinding solution includes only lysozyme, approximately 0.024 mg of lysozyme was 

rebound. Approximately 0.02 mg of RNase A was rebound when only competitor protein 

solution existed in the rebinding solution. The imprinted protein, lysozyme, was rebound 

2.8 times greater than the competitor protein, RNase A when the template to competitor 

ratio was 1:1 in the rebinding solution (p<0.01).  
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Figure 17. Competitive binding of protein to 0.1 mg lysozyme-imprinted scaffold after 3 

hours of digestion. 
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The amount of lysozyme and RNase A rebound to the samples was also measured 

after 24 hours in Figure 18. The amount of lysozyme rebound to the surface of the 

scaffold was approximately 0.09 mg when the ratio of lysozyme and RNase A was 1:0 in 

the rebinding solution. When the rebinding solution included only RNase A, the amount 

of RNase A rebound was approximately 0.05 mg. Thus almost twice the amount of 

template protein was rebound to the surface (p<0.05). Lysozyme was rebound almost 2.5 

times more than RNase A on the surface when the amount of template and competitor 

proteins was the same in the rebinding solution (p<0.03).  
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Figure 18. Competitive binding of protein to 0.1 mg lysozyme imprinted scaffolds after 

24 hours of digestion. 
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Samples imprinted with 1 mg lysozyme were also tested for their selectivity for 3 

hours of digestion (Figure 19). When only lysozyme existed in the rebinding solution, 

approximately 0.04 mg was rebound to the surface, and approximately 0.03 mg of protein 

was rebound when the rebinding solution included only RNase A (p<0.001). The amount 

of lysozyme rebound to surface was similar to the amount of RNase A rebound in the 

rebinding solution which included template (lysozyme) and competitor (RNase A) in the 

same ratio (p>0.05).  

The result shown in Figure 20 after 24 hours demonstrates approximately 2.6 

times more template molecules were rebound than competitor molecules when the ratio 

of rebinding solution was 1:1 at template to competitor (p<0.03).  When there was only 

template protein or competitor protein in the rebinding solution, the amount of template 

protein rebound to the surface was three times greater than that of competitor protein 

rebound (p<0.001). Thus results show that the scaffolds bound more lysozyme (template) 

than RNase A (competitor) when both molecules were in the rebinding solution after 24 

hours, and indicate the enhanced protein selectivity after 3 hours of digestion. 
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Figure 19. Competitive binding of protein to 1 mg lysozyme-imprinted scaffolds after 3 

hours of digestion. 
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Figure 20. Competitive binding of protein to 1 mg lysozyme- imprinted scaffolds after 24 

hours of digestion. 
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In order to test the selectivity of samples with high protein loading on the surface, 

samples imprinted with 3 mg of lysozyme were tested (Figure 21 and 22). In the 1:0 

rebinding solution containing only template (lysozyme), the amount of template protein 

rebound was approximately 0.13 mg after 3 hours of digestion, but after 24 hours, the 

amount was approximately 0.7 mg, which was almost five times greater. When the ratio 

was 0:1 (RNase A only), the amount of competitor protein (0.21 mg) rebound to the 

surface after 24 hours was almost 2.5 times more than after 3 hours (0.085 mg) of 

digestion. At high protein loading the amount of protein bound to the surface was very 

different after 3 and 24 hours, and the difference was greater than that at low protein 

loading. The amount of lysozyme bound to the surface after 24 hours of digestion was 

almost three times more than RNase A when rebinding solution included both proteins 

with the same ratio 1:1 (p<0.01). High protein loading scaffolds show that the amount of 

competitor binding to the surface decreases. Thus non-specific binding relatively 

decreases slightly in high protein loading scaffolds. 
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Figure 21. Competitive binding of protein to 3 mg lysozyme imprinted scaffolds after 3 

hours of digestion. 
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Figure 22. Competitive binding of protein to 3 mg lysozyme imprinted scaffolds after 24 

hours of digestion. 
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4.5.2 RNase A-imprinted scaffolds 
 

RNase A was used as a template protein, and lysozyme was used as a competitor 

protein. Scaffolds imprinted with  0.05 or 0.1 mg of RNase A were exposed to solutions 

containing template to competitor at the ratios of 1:0, 3:1, 1:1, 1:3 and 0:1. For low 

protein loading, scaffolds imprinted with 0.05mg RNase A were tested. There were no 

statistically significant differences after 3 hours of digestion (Figure 23). Thus protein 

selectivity of RNase A-imprinted scaffolds was analyzed with the results after 24 hours 

(Figure 24). At the ratio of 1:0, the amount of RNase A rebound was approximately 0.99 

µg, and approximately 0.27 µg of lysozyme was rebound at the ratio of 0:1. Over three 

times more template molecules were bound than competitor molecules (p<0.001). 

Comparing the amount of protein digested in the rebinding solution combining template 

protein to competitor protein at the ratios of 3:1 and 1:3, twice more template protein than 

competitor protein was rebound (p<0.001). Almost no lysozyme was detected when the 

ratio was 3:1, and similarly no RNase A was shown at the ratio of 1:3 after 3 and 24 

hours of digestion due to their little rebinding. As shown in section 4.2 at low loading, 

there was no significant difference between the amount of protein bound after 3 and 24 

hours of digestion. The difference between the amount of template and competitor 

rebound was similar at the ratio of 1:1 (p>0.05).  
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Figure 23. Competitive binding of protein to 0.05mg RNase A imprinted scaffolds after 

3hours of digestion. 
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Figure 24. Competitive binding of protein to 0.05mg RNase A imprinted scaffolds after 

24 hours of digestion. 
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Scaffolds imprinted with 0.1 mg of RNase A showed more significant protein 

selectivity results than that with 0.05 mg of RNase A after 3 hours (Figure 25). In Figure 

26, the amount of RNase A rebound was approximately 1.8 µg at the ratio of 1:0, and 

approximately 0.9 µg of lysozyme was rebound at the ratio of 0:1 (p<0.001). At the ratio 

of 3:1, the amount of RNase A rebound was approximately 1.2 µg, and the lysozyme 

rebound to the surface was approximately 0.5 µg at the ratios of 1:3 (p<0.001). Then 

rebinding solution contained both proteins with the same ratio 1:1, the amount of RNase 

A rebound was almost 0.6 µg  and lysozyme rebound was approximately 0.35 µg 

(p<0.02). Therefore, the amount of template protein (RNase A) rebound to the surface 

was almost twice greater than did competitor protein (lysozyme). Most of the protein 

selectivity results demonstrate that the protein-imprinted scaffolds had the ability to 

selectively bind their template molecules. 
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Figure 25. Competitive binding of protein to 0.1 mg RNase A-imprinted scaffolds after 3 

hours of digestion. 
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Figure 26. Competitive binding of protein to 0.1 mg RNase A-imprinted scaffolds after 

24 hours of digestion. 
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4.6 Cytocompatibility 
 
4.6.1 SaOS-2 cells 
 

SaOS-2 osteoblastic cells were seeded onto blank and lysozyme-imprinted 

scaffolds. After the culture period of 1, 3 and 7 days, the cytocompatibility of the 

polysiloxane scaffolds was determined. The results in Figure 27 indicate that SaOS-2 

cells proliferated on both blank and lysozyme-imprinted polysiloxane scaffolds (p<0.001). 

There were no statistically significant differences between the blank and imprinted 

scaffolds. Then, cell cultures were assayed for synthesis of alkaline phosphatase. Figure 

28 presents the result of AP assay for blank and lysozyme-imprinted materials. There is 

possible decrease of AP activities on imprinted scaffolds at 7 days, but no statistically 

significant differences could be shown on the cells cultured on blank and imprinted 

materials (p>0.05). 
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Figure 27. DNA contents for SaOS-2 cells cultured on scaffolds. 
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Figure 28. Alkaline phosphatase activity for SaOS-2 cells cultured on scaffolds. 

 
4.6.2 Scanning Electron Microscopy 
 

Morphology of a SaOS-2 cell cultured on the blank scaffold for 1 day is shown in 

Figure 29. The image of the cell surface is characterized by scanning electron microscopy. 

The cell was flattened and spread widely on the surface of a scaffold. The cell is well 

attached to the surface, and the edge of the cells is occupied with lamellipodia and 

filopodia. 

 
 

Figure 29. SEM image of a SaOS-2 cell on a blank scaffold after 1 day. 
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Figure 30 shows a cell that was seeded on a scaffold and cultured for 7 days. If 

cells migrate, the leading edge has moved forward and spread. Then the lamellipodia at 

the edge form a thin flat sheet and separated into two lamellae [50]. The shape of the cell 

in the image indicates the growth and migration of the cell. Thus the cell looks retracting 

at the right lamella and extending at the left edge of lamellipodia. It has been growing 

and moving to the left direction in the SEM image. 

 

 
 

Figure 30. SEM image of SaOS-2 cells on the scaffolds after 7 days of culture. 
 

4.6.3 C3H cells 
 
Scaffolds, imprinted with 0.1 mg of RNase A, that showed gradual proliferation 

with SaOS-2 cells were subsequently tested using C3H cells. The cells were grown on the 

well-plate and RNase A-imprinted scaffolds up to 7 days. Because we did not see the 

statistically significant differences between blank and imprinted scaffolds (Figure 27 and 

28), only one type of samples was chosen for the C3H experiment. The results of DNA 

assay show the growth of C3H cells (Figure 31). Statistical analysis of DNA content of 

C3H cells showed significant differences between control well plates and cells seeded on 

the scaffold each period (1-day: p<0.05, 3 and 7-day: p<0.001). C3H cell contents in the 

control wells increased significantly from 1 day through 7 days (p<0.001). Though cell 
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contents with the scaffolds revealed no statistically significant between 1 and 3 days, the 

cell contents significantly increased from 3 days to 7 days (p<0.01). The growth rate of 

C3H cells was generally slower than SaOS-2 cells during routine culture. Figure 32 

indicates the result of AP assay for C3H cell activity. Even though the result of DNA 

assay shows more cells were grown on the well-plate than cells cultured on the scaffolds, 

the AP activity of the cells was not higher when cells were cultured on the plates (p>0.5). 
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Figure 31. DNA contents for C3H cells cultured on the well plate and scaffolds. 
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Figure 32. Alkaline phosphatase activity for C3H cells cultured on the well plate 

and scaffolds. 
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CHAPTER 5. DISCUSSION 
 
 

Three dimensional polysiloxane scaffolds possessing micro and macropores have 

been designed to demonstrate their ability of protein-selectivity, and have been developed 

to be cytocompatible.  

 
 
5.1 Fabrication of scaffolds 

 
5.1.1 Polysiloxane scaffolds 
 

Molecularly imprinted polymers have been developed in several ways. Acrylic 

polymers were produced often using methacrylic acid and polyacrylamide as functional 

monomers [26, 51, 52], and thin-film polymers were designed using phosphorylcholine 

by a micro-contact approach [53]. Acrylic polymers have potential advantages of 

capacity, stability and cost effectiveness, but they lack sufficient thermostability and 

mechanical strength [51]. Polysiloxane (silica; SiO2) materials have been developed in 

this study using a sol-gel process. The silica materials have been used to encapsulate 

biomolecules such as cytochrome c, myoglobin and hemoglobin in transparent porous 

silica glass matrices [54-56]. The entrapped biomolecules in a matrix would detect and 

react with reactant molecules by diffusion. Thus the materials can be useful for 

biosensors, chromatography, and immunoadsorbent [54, 57]. In order to deposit template 

protein into the polysiloxane materials for the first step of molecular imprinting, similar 

method to encapsulation technique was used. On the other hand, the template would be 

removed to imprint biomolecules to the polysiloxane materials and leave the recognition 

sites that only template molecule can bind by sol-gel processing. This process was used 

because the materials could be prepared easily by adding solutions to a silane base in a 

liquid phase. TEOS can be hydrolyzed and polycondensed into silica gel easily, and has 

been applied for this study [58]. APS was used as functional monomer with TEOS to 

imprint large biomolecules [59].  

The one-step sol-gel process was performed in the beginning of this study with a 

TEOS to APS volume ratio of 3:1. Though Venton et al. fabricated polysiloxane polymer 

with the same ratio of TEOS to APS [59], the bulk type scaffolds used for present study 
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could not retain their structural integrity in a simulated biological environment, being a 

cell culture medium at 37 ºC. Moreover pH of the materials was too alkaline (ca. pH 11). 

Thus, the two-step sol-gel process was applied next, and the TEOS to APS scaffold 

volume ratio for the two-step process was determined to be 4 to 1. Approximately 80% of 

three dimensional scaffolds could retain their structure in a simulated biological 

environment during the whole experiments for a month, and the scaffolds need to be 

tested more than a month in the future work. The pH was still alkaline (ca. pH 9.5), but it 

could be controlled by changing external condition (described in section 3.6.1).  

The properties of the scaffolds widely varied with gelling conditions. Huang et al. 

tested the effect of HCl on the gelation time in a two-step sol-gel process. A larger 

amount of HCl and higher base concentration lead to faster gelation [60]. In the first step, 

HCl has an effect on the property of the scaffolds in this study as well. The scaffolds 

become transparent glass-like materials if the pH of the solution is very low (ca. pH < 2). 

In the second step, when solution II was prepared in the mold vial, the time at which the 

reaction sat at room temperature determined the properties of the scaffolds as well. APS, 

used as a functional monomer, is very sensitive and it makes the scaffold color change 

(becomes white) when the APS in a liquid phase stays in a vial over 15 minutes. It 

seemed that the H2O included in 0.1M SDS caused condensation of APS by hydrolysis. 

Thus the time during which the APS is exposed to the SDS plays an important role in 

changing the properties, especially the turbidity of the mixtures of solutions I and II. 

When the acidity of solution in the first step is high and the time at which solution II sits 

at room temperature is short, the scaffolds also become glass-like materials. If the 

scaffolds are immersed into a liquid, they fracture apart. The glass-like scaffolds are very 

hard materials, but liquid seeps through the microcracks in the glass-like scaffolds, 

making them break down and disintegrate into very small particles. Therefore, the 

polysiloxane scaffolds that were able to be imprinted with biomolecules were fabricated 

with 9.1% v/v of 0.1M HCl in the first step. The time when APS exposed to the SDS was 

fixed at 30 minutes before mixture of solution I and II. 

The fabrication of scaffolds using sol-gel processing went through aging and 

drying steps after gelation. When the scaffolds were aged and dried from the evaporation 
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of the solvent phase, the vapor from evaporation created the glass-like surface around the 

scaffolds. The glass-like surface which covers the pores was then removed via grinding.  

  
 
5.1.2 Imprinted Polysiloxane Scaffolds 
 

Molecularly imprinted polysiloxane materials were prepared. As a long-term goal, 

scaffolds imprinted with a growth factor receptor may be expected to lead to biospecific 

and desired cellular responses. Molecular imprinting technique has been investigated for 

chromatography, which is a method to separate or analyze complex mixtures [30]. The 

technique has not been used to assess the ability of imprinted surfaces to control cell 

behavior. Some research applied molecular imprinting on antigen-antibody interaction 

with making synthetic antibodies. Due to the complication of antigen-antibodies 

interactions, no research could achieve similar capabilities to natural antibodies. There is, 

however, a high potential of molecular imprinting technique on artificial antibodies [61].  

Some approaches used BSA, urease, cytochrome c, 2-aminopyridine and 

lysozyme as template molecules [25, 30, 59, 62]. In this study, lysozyme was applied as a 

model template biomolecule before actually using a growth factor due to its size and 

reasonable price. In addition, the molecular weight (14.3 kD), shape and structure (PDB 

code: 1AZF) of lysozyme have been also widely known [63]. RNase A (PDB code: 

1AFU) was chosen as another model template biomolecule due to its comparable 

molecular weight (13.7 kD) with lysozyme. The binding sites would have identical 

geometry with a template molecule. Thus particular molecule which has similar shape to 

the binding sites would be recognized. In this case, the sizes of template and competitor 

should be similar. Then the different molecules could be compared by not their sizes but 

their geometries. When protein solution was added to solution II to fabricate molecularly 

imprinted polysiloxane scaffolds, the amount of protein could be varied from 0 to 10 mg 

per sample. However, the amount of protein solution affected the properties of scaffolds. 

The interaction between protein solution and silane mixture would affect condensation of 

polysiloxane. Therefore, the volume of protein solution added in the second step should 

be less than 10% of total volume per scaffold. When the amount of protein solution was 

higher, gelation time of the mixture got longer and the mixture did not gel properly. Thus 
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some gel included mixing of white and transparent parts, and some broken gel was 

observed. When such kinds of gels were observed, the gel did not dry completely after 48 

hours in an oven. The strength of scaffolds was influenced by the amount of protein 

solutions, so the structure was smashed easily by gently pressing. 

The properties of polysiloxane materials are affected by drying conditions. The 

pores could be collapsed and the connected network between functional monomer and 

crosslinker might be broken in high drying temperature [56]. Pooart et al. investigated the 

thermal stability of lytic activity of rhea and ostrich lysozyme. The enzymes had the 

thermal stability up to 40 ºC, and both lysozyme had the optimum temperature at 30~40 

ºC. The group showed 20% of remaining activity after treatment at high temperature (80 

ºC) [64]. Therefore, the drying temperature has been fixed at 40 ºC.  

 
 
5.2 Protein loading 
 

The amount of protein was easily altered by adding different concentration of 

protein solution. Addition of protein with higher loading on the scaffolds resulted in 

multilayers or piles of embedded protein. Lysozyme-imprinted scaffolds showed 

submicron-sized pores which were imprinted nanocavities on the surface after digestion 

of surface-exposed protein to the enzyme solution (Figure 6). In order to expose 

maximum number of imprinted binding sites, the scaffolds were digested with the 

protease solution rather than simply washed with water. If the template protein could be 

washed with water, it indicates that the binding strength between protein and the material 

is weak, and shows low protein retention on the surface [62]. Other researches also used 

strong washing solutions, but different methods to remove template using acetone, acetic 

acid [22], acetonitrile [29] and ammonia [30]. The nanocavities may indicate the 

imprinted binding sites on the surface in which the template protein can rebind. Thus the 

quantity of protein available on the surface of scaffolds is important. Protein loading 

experiments were executed to determine the amount of protein at the surface. However, 

the amount of lysozyme released from scaffolds was approximately 80% of the amount 

loaded after 24 hours of digestion. The amount of protein exposed to the surface and 

digestion increased with protein loading. RNase A-imprinted scaffolds were also 
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designed to measure the amount of protein at the surface. The results with RNase A used 

as a model template molecule were compared to the result with lysozyme as a template 

molecule. The amount of RNase A exposed to the surface was approximately 10% of the 

amount loaded after 24 hours of digestion. Thus, compared with lysozyme imprinted 

scaffolds, more protein was entrapped in the polysiloxane scaffolds. The released amount 

of protein from RNase A-imprinted scaffolds was increased with the amount of loading. 

We can expect that with greater protein loading, the more potential binding sites will be 

present on the surface of scaffolds. This would be discussed more in protein selectivity 

section. 

The result in section 4.2 shows the difference between scaffolds before and after 

grinding. The amount of protein exposed to the enzyme solution was greater on the 

scaffolds from which the glass-like surface was removed. The glass-like layer that 

covered the surface of samples inhibited the protein release from the scaffolds. Thus the 

property of the surface can be one of the significant factors to determine the amount of 

binding sites on the scaffolds. 

 
 
5.3 Surface Area and porosity 
 

Each scaffold may have different pores and pore area when it is fabricated. In 

order to obtain the average surface area of samples, nitrogen adsorption was applied to 

seven different kinds of samples. The results were compared with surface areas of blank 

and imprinted scaffolds, scaffolds with the three different protein amount, and lysozyme 

and RNase A imprinted scaffolds. All comparisons did not show any significant 

differences among the seven types of samples. Generally, macro pores (µm) existing on 

scaffolds are for cell and tissue ingrowth, and small pores (nm) are for cell adhesion and 

protein binding [65]. Thus, pore area, pore diameter and porosity of scaffolds were 

examined by porosimetry. Three different types of scaffolds, blank, 0.05 mg RNase A- 

and lysozyme-imprinted samples, were tested. There was no statistically significant 

difference in all results. The nanocavities revealed by imprinting with 0.05 mg of 

lysozyme and RNase A on surfaces may not affect total amount of both surface area and 

pore area resulting from nano-, micro-, macro-pores. Therefore, several different types of 
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samples should be tested in the future to check whether the amount of protein imprinted 

and types of protein give effects on porosity. 

 
 
5.4 Protein Selectivity 
 

Two proteins, lysozyme and RNase A, were labeled and imprinted into the 

scaffolds for selectivity tests. These proteins were used to prepare rebinding solutions 

which included either template protein or competitor protein, or both template and 

competitor proteins. Those proteins were labeled with three different dye compounds in 

order to distinguish between loaded and reloaded proteins.  

Lysozyme or RNase A-imprinted scaffolds were tested in the rebinding solutions 

which included several ratios of template protein to competitor protein as shown in table 

4. The template protein (lysozyme) rebound to the 0.1mg lysozyme-imprinted surface 

was two times greater than competitor protein (RNase A) after 24 hours. When RNase A 

was used as template protein, the template protein rebound to 0.05 and 0.1mg RNase A 

imprinted surface was also two times more than competitor protein (lysozyme). The 

template protein (lysozyme) rebound to the 1 and 3mg lysozyme-imprinted surface was 

three times greater than competitor protein (RNase A) after 24 hours. Overall the results 

showed that the template protein was preferentially bound to the surface of scaffolds 

when compared with the amount of rebound in the presence of a similarly sized 

competitor protein. Even though nonspecific protein adsorption, which was lysozyme 

bound to RNase A-imprinted materials and vice versa, was observed, still almost twice as 

much of the template was rebinding to the surface. Therefore, the polysiloxane materials 

with sol-gel processing show the protein selectivity.  

When protein was highly loaded on the surface, the embedded protein was not 

equally distributed and showed multilayers or piles of the protein as mentioned earlier. 

The selectivity results, however, showed more binding of template protein than 

competitor. It may indicate there are more binding sites for specific template protein on 

the surface. In addition, more template protein was bound to the surface in high loading 

(three times greater) than low loading (two times greater). It shows a little more apparent 

protein selectivity on the high loading surfaces than low loading surfaces. 
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Hunnius et al. showed that imprinted sites in silica matrix change selectivity 

based on preparation procedures such as chemical composition. The group also described 

that the selective adsorption of organic molecules was not related to imprint effects and 

was predicted to be dependent on surface polarity of the porous materials [23]. Gore et al. 

developed molecular imprinting polymer using methacrylic acid as monomer, ethylene 

glycol dimethacryate as crosslinker and cholesterol as a template. The group showed non-

specific binding onto the materials could be reduced by changing the hydrophobic 

crosslinker to hydrophilic glyceroldimethacrylate. Thus, the polymers showed very good 

selectivity for cholesterol as compared to other steroids [66]. Cummins et al. compared 

the selectivity between acrylic and sol-gel polymers in which both imprinted with 2-

aminopyridine. The group used three different solutions, chloroform, acetonitrile and 

methanol, for rebinding study. Though there was high affinity of non-specific binding, 

sol-gel based polymers rebound more templates than did acrylic polymers, and also 

showed the potential ability of higher selectivity of sol-gel materials [22]. 

Shi et al. investigated the selectivity in protein recognition with imprinting 

lysozyme and RNase A that were the same proteins as our study. The group defined the 

protein ratio that decreased imprinted protein adsorption to 50% of its non-competing 

value as R50, and estimated of the relative affinity of the pair of protein containing 

lysozyme and RNase A. A larger R50 means a higher affinity of the imprinted protein for 

the surface. The lysozyme imprinted exhibited a 26-fold enhanced selectivity for 

lysozyme over the RNase A imprinted, and RNase A imprint was increased by 20-fold of 

R50 when adsorbing RNase A versus lysozyme [7, 62]. 

 
Table 4. The ratios of rebound templates to competitor for each imprinted scaffold. 

Template / Competitor 
(lysozyme) / (RNase A) 

Template / Competitor 
(RNase A) / (lysozyme) 

Lysozyme-
imprinted 
scaffolds 1:0 / 0:1 1:1 

RNase A-
imprinted 
scaffolds 1:0 / 0:1 3:1 / 1:3 1:1 

0.1 mg 1.66 2.4 0.05 mg 3.6 2.15 1.87 
1 mg 2.9 2.44 
3 mg 3.18 3.01 0.1 mg 2 2.57 1.86 
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5.5 Cytocompatibility 
 

Molecularly imprinted surfaces of biomaterials may offer potential for controlling 

events at the tissue-implant interface. Cells are influenced by not only physical surface 

such as structures of scaffolds but also chemical characteristics of the scaffolds. 

Therefore if cell surface molecules are used as template molecules for the surface of 

scaffolds, the biomaterials could bind a specific cell type. This binding of cell surface 

molecules may lead to specific intracellular signaling events as well. In order to support 

all above hypotheses, cell culture experiments were used to demonstrate 

cytocompatibility of basic polysiloxane scaffolds by checking cell proliferation, growth, 

and morphology of the cells.  

Bildirici et al. observed high levels of detachment of beads from cells occur when 

silica beads were used [67]. However, Dieudonné et al. had experiments with osteogenic 

precursor cells from rat bone marrow on pure titanium discs, silica gel bioactive glass 

discs and titania coated titanium by sol-gel technique. Initial growth up to day 3 was 

higher in pure titanium compared to sol-gel derived titania and silica gel. Cell growth 

rates were higher on the silica gel although initial cell adhesion was lower than the 

titanium substrates [68].  

DNA and alkaline phosphatase activity were measured in order to estimate the 

growth and activity of cells. First, SaOS-2 osteoblastic cells were used to assess the 

cytocompatibility of both blank and imprinted scaffolds. SaOS-2 is an isolated and 

characterized human osteosarcoma cell line. Hence, the cell line could be good for initial 

cytocompatibility research because the growth rate is faster and expected viability is 

higher than other cells. The cells grew similarly on both materials for 7 days, and 

morphology of the cells using SEM showed the fine attachment of cells to the surface of 

scaffolds. AP activities of the cells did not show significant differences either.  

Next, C3H cells were used for the cytocompatibility test for eventual use with 

bone morphogenetic protein (BMP) receptor. The cells were seeded on the well plate and 

0.1 mg RNase A-imprinted scaffolds. Though more than twice of the cells existed on the 

well plate, cells were growing gradually on the scaffolds for 7 days, and AP activity of 

C3H cells did not show the significant differences between seeded cells on the plate and 

on the scaffolds. 
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CHAPTER 6. CONCLUSIONS 
 
 
 

Molecularly imprinted polysiloxane scaffolds possessing micro and macropores 

were fabricated by sol-gel processing. The ratio of TEOS:APS was determined at 4:1 by 

observations of the strength of the scaffolds in biological environment. Thus the ratio was 

used for further investigations of the study. In order to enable cell ingrowth and tissue 

regeneration, the scaffolds needed to be macroporous as tissue engineering biomaterials. 

The foaming agent was applied to develop macroporous scaffolds. When protein-

imprinted scaffolds were fabricated, the interaction between biomolecules and the 

polysiloxane chains produced an effect on the morphology of scaffolds surface. 

After loading various amounts of protein into the scaffolds, the measured amount 

of protein accessible on the surface was approximately 80% of lysozyme loading and 

10% of RNase A loading. The amount of protein exposed to the surface and susceptible 

to proteolytic digestion increased with each protein loading. Lysozyme and RNase A as 

either templates or competitor molecules were mixed in rebinding solutions due to their 

comparable size but differing chemistry. Even though nonspecific binding was observed 

at high ratios of competitor, the template molecules were preferentially bound to the 

surface of scaffolds in the rebinding solutions. 

Initial cytocompatibility studies were conducted with SaOS-2 and C3H cells. The 

study demonstrated that the scaffolds support the adhesion, growth, and activity of cells.  

The potential for molecularly imprinted polysiloxane scaffolds as tissue 

engineering biomaterials has been shown by these selectivity and cytocompatibility 

studies. Therefore, the developed polysiloxane scaffolds are novel biomaterials that may 

elicit controlled protein and cellular interactions at the interface between bone tissue and 

implant. As further investigations, development of imprinted scaffolds with cell surface 

molecules should be performed. Then, osteoblastic cell responses to the scaffolds need to 

be tested. 
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